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We consider the transport of rigid objects with internal structure in a flashing ratchet potential by investi-
gating the overdamped behavior of a rodlike chain of evenly spaced point particles. In one dimension, ana-
lytical arguments show that the velocity can reverse direction multiple times in response to changing the size
of the chain or the temperature of the heat bath. The physical reason is that the effective potential experienced
by the mechanically coupled objects can have a different symmetry than that of individual objects. All ana-
lytical predictions are confirmed by Brownian dynamics simulations. These results may provide a route to
simple, coarse-grained models of molecular motor transport that incorporate an object’s size and rotational
degrees of freedom into the mechanism of transport.
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I. INTRODUCTION

A number of theoretical and experimental studies in re-
cent years have addressed directed transport of diffusive par-
ticles in spatially periodic systems in the absence of net
forces, which occurs when spatial or temporal inversion
symmetry is broken while the system is kept away from
thermal equilibrium �1,2�. Such systems are called ratchets
or Brownian motors �3�, and their study has both fundamen-
tal and practical motivations, including applications in biol-
ogy and nanotechnology �4�. There are various mechanisms
by which the system can be maintained out of thermal equi-
librium, including a time-dependent force �often called a
“rocking” ratchet� �5–7� and a time-dependent potential bar-
rier �a “flashing” ratchet� �8,9�.

Although many ratchet studies have dealt with the asym-
metric pumping of individual, pointlike particles �7,8,10,11�,
motors with internal structure have recently attracted inter-
est. One reason is that such studies may provide a route to
models of the linear transport of biological molecular mo-
tors. A number of studies have demonstrated qualitative dif-
ferences between the behavior of mechanically coupled par-
ticles and that of a single particle in classical, overdamped
ratchet systems, for example: In contrast to the behavior of
an individual particle, two harmonically coupled particles in
a flashing ratchet undergo directed motion in the absence of
thermal fluctuations �12,13�. For a flashing ratchet, two har-
monically coupled particles have a smaller velocity than a
single particle, whereas for a rocking ratchet, the coupled
particles have a greater velocity �14,15�. Two rigidly coupled
particles in the presence of a stochastically rocked ratchet
potential undergo transport that reverses direction as a func-
tion of the dimer size �16,17�, and velocity reversal in a
rocking ratchet is also observed for two particles coupled
through a double-well bistable potential �18,19�. Further-
more, a variety of biological molecular motors have been
modeled by harmonically coupled particles in a ratchet
�20–25�. For instance, large collections of mechanically
coupled particles in a flashing ratchet can undergo spontane-
ous oscillations, which may be relevant to the collective

motion of molecular motors in muscles �26�. In addition,
hopping models with asymmetric transition probabilities be-
tween discrete states can be used to study the transport of
coupled particles �27–30�.

In this study, we wish to establish a conceptual under-
standing of the role of coupled motion in a flashing ratchet
by considering the most simple possible form of mechanical
coupling between particles: a chain of rigidly connected
point particles. The chains are exposed to Gaussian white
noise in the overdamped limit and driven by a periodically
modulated, asymmetric, spatially periodic potential �Fig. 1�.
The periodically flashing ratchet scheme is chosen because it
is simple enough to allow an intuitive understanding and
analytical prediction of the behavior of coupled particles.

Using analytical arguments, we show that, for a one-
dimensional �1D� system, the average velocity can reverse
direction in response to changing the size of the chain or the
temperature of the heat bath without changing the symmetry
of the applied potential. However, when the chain is allowed
to rotate freely in three dimensions �3D�, or when its length
is much less than the spatial period of the ratchet potential,
velocity reversal is no longer observed, and the qualitative
behavior of single particle motion is recovered. The behavior
observed for mechanically coupled particles in a flashing
ratchet can be understood in terms of the chain’s center-of-
mass effective potential, which can have different symmetry
than the potential felt by an individual particle. All analytical
predictions are confirmed by numerical simulations.

FIG. 1. The applied ratchet potential V�x�, shown in the sche-
matic above, is characterized by periodic length L, height Vmax, and
asymmetry �.
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The layout of this paper is as follows: In Sec. II, we
introduce the Brownian dynamics �BD� model used in our
simulations. In Sec. III, we discuss the motion of chains of
two or more evenly spaced point particles constrained to 1D
motion in the limit of perfect confinement �kT�Vmax�. In
Sec. IV, we discuss how the direction of ratchet velocity for
two coupled particles moving in one dimension depends on
the temperature of the surrounding heat bath. The behavior
of rigidly connected particles in 3D is discussed in Sec. V. In
the conclusion, we discuss a possible experimental realiza-
tion of this system, which may be used to directionally sepa-
rate polymer segments of different length. We also discuss
the possible biological relevance of our results, namely, the
observation that complex molecular motors with only small
differences in structure can move in opposite directions.

II. THE MODEL

We consider mechanically coupled particles periodically
subjected to a piecewise linear “sawtooth” potential V�x�
�Fig. 1�, characterized by periodic length L, height Vmax, and
asymmetry �. The particles are alternatingly subjected to
V�x� for a time period ton and allowed to diffuse freely for a
time period toff, thus, asymmetrically harnessing Brownian
motion to produce net transport which, for ��1/2, is in the
+x direction in Fig. 1 for noninteracting particles �see Sec. III
and �2,8,12��.

The simulations in this study are based on the following
scheme: The coupled particles are modeled as a chain of
pointlike beads, separated by a distance d, defined by a re-
pulsive Lennard-Jones interaction

Vij�rij� = �4��� �

rij
�12

− � �

rij
�6	 + �: rij � 21/6�

0: rij � 21/6�

 , �1�

where rij is the separation between beads, and a finite exten-
sible nonlinear elastic �FENE� potential between adjacent
beads

U�rij� = −
1

2
kFR0

2 ln�1 −
rij

2

R0
2� . �2�

The equations of motion of individual beads are given by

mr̈i = − �bṙi + 	�t� − �Vint�ri� − �Vext�t,ri� , �3�

where 	�t� is a randomly fluctuating Gaussian white noise
term with zero mean and correlation �	�t�	�s��=2�bkT
�t
−s�, �b is the drag coefficient of a bead, k is the Boltzmann
constant, and T is the temperature of the heat bath. The term
Vint�ri� represents the potential of the bead due to its interac-
tion with the other beads in the chain, and Vext�t ,ri� is the
external ratchet potential. The equations of motion are inte-
grated using a Brownian dynamics algorithm. The mass m of

each bead is set to unity and we use �, �, and �=
m�2

� as
scaled units of length, energy, and time.

Unless otherwise specified, L=5�, and R0 is chosen such
that the distance between adjacent beads is d=0.97� for kT
=�. In Secs. III A and III B, the FENE parameter R0 is al-

tered to adjust the value of d. In Sec. IV, the temperature T is
varied, but R0 is adjusted accordingly, so that d is the same
for different values of the temperature. We set ton= toff=20,
because this gives a chain of several beads enough time
to localize during ton and to diffuse to an adjacent well
during toff.

In order to isolate the role of an object’s geometry in
ratchet transport from the effect of varying the diffusion con-
stant, we give all chains the same total drag coefficient. The
drag coefficient for one bead is chosen to be �b=1/N, where
N is the number of beads in the chain. Since hydrodynamic
effects have not been included, the chain’s total drag coeffi-
cient is �T=N�b=1 �31�.

When the particles are constrained to motion along the x
axis, this model describes a rigid rod made up of evenly
spaced particles. When individual particles are allowed to
move in three dimensions, this system corresponds to the
Rouse model of a polymer, with equilibrium configurations
described by a self-avoiding walk �32,33�. This modeling
scheme is used here for rigid rods in order to provide conti-
nuity with our investigation of the role of flexibility in flash-
ing ratchet transport �32�.

III. EFFECTS OF COUPLING IN LOW
TEMPERATURE REGIME

Before we describe how mechanically coupling the
motion of point particles affects their ratchet velocity, we
briefly review the motion of a single particle �a monomer� in
a flashing ratchet �2,8,12�. In the low-temperature limit �kT
�Vmax�, a monomer will have positive velocity when �
�1/2 for the following reason: During ton, the monomer
localizes at the minimum of the sawtooth potential: xmin
= �1−��L, where x=0 corresponds to the beginning of the
potential well. The minimum distance the monomer must
diffuse during toff in order to localize in the adjacent well in
the +x direction �to the right in Fig. 2� during ton is �x+
=�L. The minimum diffusion distance to localize in the ad-
jacent well in the −x direction �to the left in Fig. 2� is �x−
= �1−��L. The ratchet velocity will be positive if �x+

��x−. As the asymmetry � is increased from zero, there is a
reversal from positive to negative velocity at a critical asym-
metry, �c=1/2, given by the condition: �x+=�x−.

For a 1D chain of particles in the limit kT�Vmax, the
characteristic diffusion distances, �x+ and �x−, can be cal-
culated for the chain’s center of mass �CM� by considering
the shape of the effective potential, U�xCM�, given by

U�xCM� =
1

N
�
i=1

N

V�xi� . �4�

The center of mass of a chain of coupled particles will
localize exactly at a local minimum, xmin, of its effective
potential. The distance �x+ ��x−� is given by the distance
between xmin and the closest absolute effective potential
maximum in the +x �−x� direction �Fig. 2�. The net ratchet
velocity is positive �negative� for ���c ����c�, respec-
tively, where �c is again given by the condition �x+=�x−.
For simplicity, we limit our discussion to chains with total
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length less than a spatial period of the ratchet ��N−1�d
�L�. The velocity of any object is antisymmetric about �
=1/2; thus, only values of � in the interval �0; 0.5� are
discussed in this study.

A. Dimer

We begin to explore the role of coupled particle motion in
a flashing ratchet by considering two coupled particles �a
dimer� separated by a distance d, constrained to 1D motion.
The system behaves differently depending on whether d
��L or d��L, and we will briefly discuss each of these
cases.

When d��L, the dimer localizes to the center-of-mass
position xmin= �1−��L−d /2 during ton because, at this posi-
tion, one bead experiences the shallow slope of V�x� and the
other sits at the minimum of the potential well. Any displace-
ment in the +x or −x direction would lead to a restoring total

force, and so xmin corresponds to a minimum of U�xCM� �Fig.
2�a��.

For a dimer to localize in the adjacent well in the +x
direction after a toff period, it must diffuse until xCM�L
+d /2, such that both beads are in the next well and the dimer
experiences a total force FCM�0 when the potential turns
on. Therefore, �x+=L+d /2−xmin=�L+d.

Likewise, for a dimer to localize in the adjacent well in
the −x direction after a toff period, it must diffuse until xCM
�d /2, such that one bead is exposed to the steep side of the
adjacent well in the −x direction, and FCM�0 at the begin-
ning of ton. Consequently, �x−=xmin−d /2= �1−��L−d, and
the condition, �x+=�x−, yields the critical asymmetry

�c =
1

2
−

d

L
. �5�

Since Eq. �5� was obtained by assuming d��L, it holds
for d /L��c=1/2−d /L, or d /L�1/4.

When d��L, the effective potential U�xCM� has two local
minima: xmin 1= �1−��L−d /2 and xmin 2= �1−��L+d /2,
where xmin 1 corresponds to localization inside a V�x� poten-
tial well, and xmin 2 corresponds to a dimer straddling a V�x�
potential maximum �Fig. 2�b��. The average position during
ton depends on the relative probability for the object to be
trapped in each of these minima, which is a function of �,
d /L, and toff. If the dimer has a probability 
�� , d

L , toff� of
being trapped in the position xmin 1 at the end of toff, then the
average localization position is: �xmin�=
xmin 1+ �1
−
�xmin 2= �1−��L+ �1−2
�d /2.

In this case, the characteristic diffusion distances are
�x+=L+d /2− �xmin� and �x−= �xmin�−d /2, and the condi-
tion, �x+=�x−, yields

�c =
1

2
− 
��c,

d

L
,toff� d

L
. �6�

Note that for d��L, where 
=1, Eq. �6� simplifies to Eq.
�5�.

These analytical predictions are confirmed by BD simula-
tions. Figure 3�a� shows simulation results for the time-
averaged velocity of dimers with different d, for kT /Vmax
=1/50, demonstrating that the ratchet velocity reverses as a
function of �. Figure 3�b� confirms the prediction of Eq. �5�
that �c decreases linearly with d /L, for d /L�1/4, and is no
longer linear with d /L for d /L�1/4 �Eq. �6��.

B. Three or more coupled particles

We now extend our discussion to chains of three or more
particles moving in one dimension. In particular, we make
analytical arguments for when a velocity reversal with � is
expected for three coupled particles �a trimer� and support
these predictions with BD simulations. Analytical predictions
become increasingly complicated for N�3, and we simulate
chains with N=4 and N=5 to make general observations
about 1D coupled motion in a flashing ratchet.

For N coupled particles, each separated by a distance d,
the number and locations of minima in the effective potential
depend on the following factors: �i� Is the potential asymmet-

FIG. 2. �a� Schematic of 1D ratchet potential V�x� with �
=0.25 �top� and the effective potential U�xCM� of a dimer �d
=0.2L� in this potential. The dimer’s localization position is xmin

= �1−��L−d /2. The diffusion distances necessary for localization
in the adjacent wells in the +x direction and in the −x direction are
labeled as �x+ and �x− respectively. �b� V�x� and U�xCM� for �
=0.25 and a dimer of length d=0.33L. Since now d��L, there are
two possible localization positions. The dimer’s average localiza-
tion position falls somewhere in the shaded region �see text�.
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ric enough that one particle on the short �steep� side will
experience more force than �N−1� particles on the long
�shallow� side �i.e., is ��1/N�? If ��1/N, the object will
localize at a position where none of the particles is on the
steep part of the potential. If ��1/N, the force exerted on
particles in the shallow part of the potential will push the
localization position further to the +x direction. �ii� Is the
separation between particles longer than the short side of the
sawtooth potential �i.e., is d��L�? When d��L, each pe-
riod of the effective potential U�xCM� will have only one
minimum. For d��L, there are N minima for each period of
U�xCM�, each corresponding to one of the particles localizing
at the minimum of the sawtooth potential V�x�.

Based on these factors, we discuss the behavior of a tri-
mer in the following four regimes: �I� ��1/N=1/3 and d

��L; �II� ��1/N=1/3 and d��L; �III� ��1/N=1/3 and
d��L; and �IV� ��1/N=1/3 and d��L.

Regime I ���1/3, d��L�: The force on one particle on
the steep side of the potential is stronger than the force on
two particles on the shallow side of the potential, and there-
fore the trimer will localize with one of the particles at the
sawtooth potential minimum �x= �1−��L�. Because the spac-
ing between particles is not large enough for the trimer to
straddle adjacent potential wells, the only center-of-mass lo-
calization position is xmin= �1−��L−d �see Fig. 4�a��, and
therefore �x+=L+d−xmin=�L+2d and �x−=xmin−d= �1
−��L−2d. The condition �x+=�x− yields

�c =
1

2
−

2d

L
. �7�

Regime II ���1/3, d��L�: Since the spacing between
particles is greater than �L, the trimer now has three possible
localization positions �Fig. 4�b��. The asymmetry condition
for reversal depends on the relative probability for the trimer
to localize in each of these positions. For ��1/2, the prob-
ability is greatest for the trimer to localize in the position
furthest in the −x direction �xmin= �1−��L−d�. Therefore, it
is reasonable to expect �x+��x− for some ��1/2, yielding
a critical asymmetry �c�1/2.

Regime III ���1/3, d��L�: The force on two particles
on the shallow side of the potential is now stronger than the
force on one particle on the steep side of the potential, lead-
ing to the localization position: xmin= �1−��L �Fig. 4�c��.
Now, �x+=L−xmin=�L and �x−=xmin= �1−��L, which
yields �c=1/2, so the velocity is always positive in this re-
gime.

Regime IV ���1/3, d��L�: A trimer with d�xCM�L
+d at the end of toff will localize at xmin= �2−��L−d, such
that the leading bead is at the minimum of a V�x� potential

FIG. 3. Brownian dynamics simulations. �a� Average velocity as
a function of � for a monomer and for dimers of length d=L /5,
L /4, and L /3, using kT /Vmax=1/50, L=5.6, and ton= toff=20. �b�
Critical asymmetry �c, as a function of d /L. Points below d /L
=1/4 are compared to the prediction of Eq. �5�, �c=1/2−d /L
�solid line�.

FIG. 4. Schematic of trimers constrained to 1D motion �kT
�Vmax�, shown at their localization positions in a ratchet potential
V�x� for the cases: �a� ��1/3 and d��L; �b� ��1/3 and d
��L; �c� ��1/3 and d��L; and �d� ��1/3 and d��L. Dashed
line indicates how the center-of-mass position of the trimer corre-
sponds to a local minimum of the effective potential U�xCM�.
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well �Fig. 4�d��. Now, �x+=L+d−xmin=2d− �1−��L and
�x−=xmin−d= �2−��L−2d, yielding �c=3/2−2d /L. Since
we have d /L���1/3, the reversal condition is never met
for this regime, and the velocity is always positive.

These predictions can be summarized as follows: The tri-
mer has positive velocity for 1 /3���1/2. When ��1/3,
�c decreases with increasing d /L. When d /L is large enough
that �c�1/3, then the trimer velocity reverses direction
twice as � is increased from zero to 1/2: first, from positive
to negative velocity at �=�c, and second, from negative
back to positive velocity at �=1/3. However, if d /L is small
enough that �c�1/3, then the trimer does not exhibit a ve-
locity reversal with � for ��1/2, and the qualitative behav-
ior of a monomer is recovered. Simulation results shown in
Fig. 5 confirm these analytical predictions.

We have shown that the effective potential for a dimer in
the presence of a sawtooth potential can have up to two
minima in each period, and it is possible for the velocity to
reverse once in the range 0���1/2. Likewise, a trimer can
have up to three minima in its effective potential and, for the
right choice of parameters, the velocity reverses twice in the
range 0���1/2. In Fig. 6, simulation results show that a
chain with N=4 can undergo three velocity reversals in 0
���1/2, and a chain with N=5 can reverse direction four
times in this range. In general, if we consider a 1D chain of
N particles with �N−1�d�L, each period of the effective
potential can have up to N minima and we expect �N−1�
possible velocity reversals.

These reversals are contingent on the existence of dis-
cretely spaced particles. In contrast, if we consider a chain of
N particles in the limit that N→� for a fixed total length
m—in other words, a continuous rod of evenly distributed
charge—we can show that the average velocity is in the +x
direction whenever ��1/2 and m��L. That is because the
rod will localize at a position where a fraction, �, of its

length experiences the steeper segment of V�x� and the rest is
exposed to the shallower side of the same potential well.
Also, to relocalize in an adjacent well after a toff period, the
rod must diffuse until a fraction, �, of its length is to the left
�−x direction� of an absolute maximum of V�x�. Thus, we
have �x+=�L+ �1−2��m and �x−= �1−��L+ �2�−1�m,
which yields the critical asymmetry �c=1/2.

IV. TEMPERATURE DEPENDENT COUPLING EFFECTS

Here, we discuss the temperature dependence of flashing
ratchet velocity for mechanically coupled particles in one
dimension compared to that of individual point particles. As
we will show, the velocity of a dimer reverses direction twice
as temperature increases, whereas a monomer in the same
system does not reverse with temperature. First, we propose
a reason for the ratchet velocity of a dimer to reverse direc-
tion with temperature, and then we present BD results dem-
onstrating this behavior.

The velocity of an object in a flashing ratchet depends on
the temperature of the surrounding heat bath in two ways: �i�
Changing the temperature affects the magnitude of ratchet
velocity by changing the diffusion constant, D=kT /N�b, of
the chain. �ii� An object in V�x� localizes exactly at the mini-
mum of U�xCM� only for the limit kT�Vmax. As temperature
increases, the object’s Boltzmann probability distribution
broadens and the mean position shifts away from the effec-
tive potential minimum, xmin, as illustrated in Fig. 7. For
coupled particles, a period of U�xCM� has several regions of
different relative slope, and the symmetry of the positional
probability distribution shifts with increasing temperature.
This can lead to a change in the direction of ratchet velocity.

For a dimer with xmin�L /2, where xCM=0 designates an
absolute maximum of U�xCM�, we expect ratchet velocity to

FIG. 5. Brownian dynamics simulations. Average velocity as a
function of � for trimers of length d=0.05L, 0.15L, 0.25L, 0.35L,
and 0.45L, using kT /Vmax=1/50, L=5, and �on=�off=20. The
dashed-line interpolation between data points is included as a guide
to the eye.

FIG. 6. Brownian dynamics simulations. �a� Average velocity as
a function of � is plotted for a chain of N=4 particles, using d
=0.2L, kT /Vmax=1/50, L=5, and �on=�off=20. The dashed-line in-
terpolation between data points is included as a guide to the eye. �b�
Average velocity as a function of � is plotted for a chain of N=5
particles, using the same parameters as in �a�.
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be in the −x direction in the limit �kT�Vmax�, as discussed in
Sec. III A. However, as T increases, we expect two velocity
reversals: �A� From negative to positive velocity and �B�
from positive back to negative velocity, for the following
reasons.

Reversal �A�: For a dimer exposed to V�x�, U�xCM� has a
shallower slope immediately to the right �+x direction� of the
absolute minimum than to the left �−x direction�. Therefore,
as T increases from zero, the mean localization position in-
creases, and a finite temperature can be chosen such that the
dimer is more likely to be in the region �L−��xCM�L�
during ton than in the region �0�xCM���, where � is the
dimer’s average diffusion distance during toff, and is given by
�=
2Dtoff. In this case, ratchet velocity is in the +x direc-
tion, indicating a reversal from negative to positive velocity
for increasing temperature.

Reversal �B�: Because a period of U�xCM� has several
regions of different slope, continuing to increase the tem-
perature can shift the probability distribution such that the
dimer is more likely to be found in the region �0�xCM

��� than in �L−��xCM�L�, producing a second reversal
from positive back to negative velocity.

The physical reason for these reversals is that, at different
temperatures, particles will sample regions of the potential
that have different slopes. Because the effective potential for
coupled particles is more complicated than the simple saw-
tooth potential V�x�, changing the temperature can change
the symmetry of the center-of-mass probability distribution,
producing a reversal in ratchet velocity.

This prediction of two velocity reversals as a function of
temperature for a dimer is confirmed by BD simulations,
shown in Fig. 8 along with the ratchet velocity of a single
particle as a function of temperature. As temperature in-
creases from T=0, the dimer undergoes a reversal from
negative to positive velocity at a point labeled A. By further
increasing the temperature, another velocity reversal is in-
duced, at point B, from positive back to negative velocity. By
contrast, the monomer always has positive velocity for �
�1/2.

V. COUPLED PARTICLES IN THREE DIMENSIONS

Here, we examine the behavior of a dimer in a three-
dimensional system in the limit �kT�Vmax�, in the same 1D
external ratchet potential, V�x�, as in previous sections.
When a dimer is allowed to rotate freely in 3D, the effective
potential depends on the dimer’s orientation with respect to
the x axis. The direction of velocity can be predicted based
on the following insights: �i� When V�x� is applied to a dimer
with a random initial distribution, the dimer experiences
both a linear force and a torque. In response to these forces,
both particles in the dimer will localize at exactly the mini-
mum of V�x�, and therefore, the center-of-mass localization
position is xmin= �1−��L. �ii� If toff is long enough that
the dimer’s orientation at the end of toff is uncorrelated with
its orientation at the beginning, the average particle distribu-
tion of a dimer at the end of toff is a uniform shell with
diameter d.

Based on these observations, it is possible to calculate the
diffusion distances, �x+ and �x−, necessary for the dimer to
localize in the adjacent well in the +x and −x direction, re-
spectively, for the majority of possible dimer orientations at
the beginning of ton. To find these distances, we must deter-
mine the position xCM for which the net force on the dimer,
averaged over possible orientations, is zero in the presence of
V�x�. It is straightforward to show that the net linear force on
a uniform shell with diameter d�L exposed to V�x� is zero if
a fraction � of the diameter is to the left of a potential maxi-
mum. The probability distribution of a freely rotating dimer
meets this requirement if it has xCM=d /2−�d or xCM=L
+d /2−�d �Fig. 9�. Thus, �x+=L+d /2−�d−xmin=�L+d /2
−�d and �x−=xmin− �d /2−�d�= �1−��L−d /2+�d. The
symmetry condition, �x+=�x−, yields �c=1/2; thus, there is
no velocity reversal for ��1/2.

FIG. 7. Upper panels: A ratchet potential V�x�, with �=0.35 is
shown �solid line� along with the Boltzmann positional probability
distribution �dashed line� for a monomer exposed to V�x�. Lower
panels: U�xCM� is shown with the corresponding probability distri-
bution for a dimer of length d=0.2L. Probability distributions dis-
played for two choices of temperature: �a� kT /Vmax=1/50 and �b�
kT /Vmax=2 �not to scale�.

FIG. 8. Brownian dynamics simulations. Average velocity as a
function of temperature T for a monomer and for a dimer of length
d=L /5, using �=0.35, L=5.6, and ton= toff=20. The dashed-line
interpolation between data points is included as a guide to the eye.
Current reversals are labeled as points A and B �see text�.
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This prediction is confirmed by BD simulations �Fig. 10�.
Results from Fig. 3 are included in this plot to illustrate how
the behavior of the freely rotating dimer matches that of the
monomer, in contrast to the velocity reversal that takes place
for a dimer in one dimension. We expect that the velocity
reversal observed in the 1D system will also vanish for rigid
chains of three or more particles in a three-dimensional sys-
tem because the symmetry arguments used for the freely ro-
tating dimer will also apply to longer chains.

VI. CONCLUDING REMARKS

We have shown that, in one dimension, for kT�Vmax, a
rigid chain of evenly spaced particles in a flashing ratchet

reverses direction multiple times as a function of chain size
or ratchet asymmetry. The physical reason is that coupled
particles in a simple sawtooth potential are effectively
equivalent to a single particle in a more complicated poten-
tial. In this sense, our results are related to the finding that a
single particle in a ratchet driven by dichotomous force fluc-
tuations can undergo multiple reversals when the external
potential has multiple wells in each period �34�.

Because a period of the effective potential of a dimer in
V�x� has multiple regions with different relative slope, the
center-of-mass probability distribution can reverse symmetry
as a function of temperature. The shifting of the probability
distribution during ton changes the likelihood for the dimer to
diffuse to an adjacent well in either direction during toff. For
this reason, a dimer can undergo multiple velocity reversals
with temperature. Note that these reversals happen for a
qualitatively different reason from the reversals described for
coupled particles in the low-temperature limit. In that limit,
the direction of velocity is determined by the symmetry of
the location of the confining minimum of the effective po-
tential, relative to the absolute potential maximum. As a
function of temperature, on the other hand, reversals occur
because of the symmetry of the steepness of the confining
potential. Because of the complexity of effective potentials
for N�1, the two reversal mechanisms are not always di-
rectly related.

Although the velocity reversals observed in a 1D system
do not occur for freely rotating rods in 3D, this does not rule
out the possibility for reversal when the object’s three-
dimensional rotation is partially confined. The ratchet trans-
port of rigid rods confined to a tunnel with radius on the
order of the rod length could provide a model for coupling
effects that can be experimentally realized more readily than
a true 1D system. For example, transport of single-stranded
DNA fragments has been observed using a two-dimensional
array of asymmetrically spaced, microscale electrodes to cre-
ate a flashing ratchet on a silicon chip �35�. A similar tech-
nique may be used to experimentally realize the present
theory. For example, one may expose a polyelectrolyte that is
confined in a quasi-1D nanochannel �36–38� to a time-
dependent, asymmetric electrostatic potential. Such a system
could provide a method to separate particles of different
sizes in opposite directions.

Our investigation of the flashing ratchet transport of me-
chanically coupled particles may also be relevant to the di-
rected intracellular transport of linear molecular motors
�2,10,39�. It has been observed that structurally similar mo-
lecular motors can move in opposite directions �40–45�.
Binding between a motor head and its track is usually by
multiple bonds, which one may choose to model by several,
semirigidly interconnected “beads” exposed to a binding po-
tential. In dimeric motors, an unbound motor head is not free
to rotate in 3D because of its attachment to the track by
another motor head. The binding potential is thus quasi-1D,
as discussed in the present paper. Our observation that ob-
jects with more internal structure have a larger number of
velocity reversals may explain why, in complex motors, a
relatively small change in structure can produce reversal of
walking direction.

FIG. 9. A freely rotating dimer �d��L� at kT /Vmax�1 experi-
ences on average no net linear force if xCM=d /2−�d of xCM=L
+d /2−�d. The dashed-line circles in this schematic indicate the
positional probability distribution of a dimer centered on these xCM

positions at the end of toff. The average diffusion distances neces-
sary to localize in an adjacent well are labeled as �x− and �x+.

FIG. 10. Brownian dynamics simulations. Center-of-mass veloc-
ity as a function of � for a freely rotating dimer of length d=0.2L,
using kT /Vmax=1/50, L=5.6, and ton= toff=20. For comparison,
data points from Fig. 3�a� for a monomer and for a dimer confined
to one-dimensional motion are also displayed.
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The current study deals with rigid rods that are shorter
than a spatial period of the ratchet potential. In another re-
cent study, we explored the role of flexibility in flashing
ratchet transport by modeling a three-dimensional Brownian
motor based on a polyelectrolyte or polymer carrier with a
radius of gyration on the order of several ratchet periods,
demonstrating that flexibility can increase the speed and the
stall force of the motor �32�. The unique collective effects
observed in each of these cases suggest that it would be
interesting to investigate an intermediate regime, such as
self-avoiding, flexible chains in 3D with total contour length
less than a ratchet period.
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